微分方程——线性微分方程



一、线性微分方程

1、一阶线性微分方程

定义

对于形如 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程,若Q(x)=0,则为一阶齐次线性微分方程;若Q(x) ≠ \ne = 0,则为一阶非齐次线性微分方程。

求解——常系数变易法

先求出齐次方程 d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0的通解 y = C e − ∫ P ( x ) d x y=C e^{- \int P(x)dx} y=CeP(x)dx再另C = u (x) ,则有 y = u e − ∫ P ( x ) d x y=u e^{- \int P(x)dx} y=ueP(x)dx,对两边求导,得到 d y d x = u ′ e − ∫ P ( x ) d x − u P ( x ) e − ∫ P ( x ) d x \frac{dy}{dx} = u^{'} e^{- \int P(x)dx} - uP(x)e^{- \int P(x)dx} dxdy=ueP(x)dxuP(x)eP(x)dx再带入到原非齐次微分方程中可得 u ′ = Q ( x ) e ∫ P ( x ) d x u^{'} = Q(x)e^{ \int P(x)dx} u=Q(x)eP(x)dx两端积分得 u = ∫ Q ( x ) e ∫ P ( x ) d x d x + C u = \int Q(x) e^{ \int P(x)dx} dx +C u=Q(x)eP(x)dxdx+C故而该非齐次微分方程的通解为 y = ⟮ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ⟯ e − ∫ P ( x ) d x y = \lgroup \int Q(x) e^{ \int P(x)dx} dx +C \rgroup e^{- \int P(x)dx} y=Q(x)eP(x)dxdx+CeP(x)dx

2、伯努利方程 ⋆ ⋆ ⋆ \star\star\star

定义

对于形如 d y d x + P ( x ) y = Q ( x ) y n ( n ≠ 0 , 1 ) \frac{dy}{dx}+P(x)y=Q(x)y^{n} (n\ne0,1) dxdy+P(x)y=Q(x)yn(n=0,1)的方程,我们称之为伯努利方程。当n=0或1时,这是线性微分方程。

求解

我们可做变换  z = y n − 1 z = y^{n-1} z=yn1 ,使得原始变为 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x)这就转变成了一个一阶线性微分方程,利用常系数变易法求得通解,最后将  y 1 − n y^{1-n} y1n代入到 z 中,可得伯努利方程的通解。

3、可降阶的线性微分方程

(1) y n = f ( x ) y^{n} = f(x) yn=f(x)

求解步骤:对两端不断积分,直到左边为 y y y

(2) y ′ ′ = f ( x , y ′ ) y^{''} = f(x,y^{'}) y=f(x,y)

求解步骤:设 y ′ = p y^{'}=p y=p,则 y ′ ′ = p ′ y^{''}=p^{'} y=p,原方程变为 p ′ = f ( x , p ) p^{'}=f(x,p) p=f(x,p)这是一个关于 p 和 x 的一阶微分方程,设其通解为 p = φ ( x , C 1 ) p=\varphi(x,C^{1}) p

  • 12
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值